
General announcements

This section is on ENERGY

1.) 



Revisiting the Atwood machine problem
Recall: A mass m1 is attached to a rope that is 
threaded over a massive pulley and attached to a second 
mass m2.  If the pulley’s mass is “M,” its radius “R” and 
its moment of inertia about its center of mass is 0.5MR2, 
determine both the angular acceleration of the pulley and 
the acceleration of each of the masses.

We found that when the pulley’s mass is taken into account, the acceleration of the 
system is smaller than it was when we ignored it because some of the force had to 
go into motivating the extra mass wrapped up on the pulley.  This extra drag 
caused the acceleration to be a little less. 
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In a nutshell:
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What does this tell us?
When we take into account the rotation of the pulley in this situation, the 
acceleration of the hanging mass is less than when we assumed the pulley was 
massless. This makes sense, because more mass has been put into motion (the 
pulley + the hanging masses) by the same motivating force(s).

We can also look at this from an energy perspective. 
– At the start, the system has gravitational PE due to the hanging masses’ 

positions above the ground
– As the pulley begins to rotate and the masses fall, some of the PE transfers 

into the translational KE of the masses. However, some of that PE also has 
to transfer into the rotational motion of the pulley.

– There is rotational KE as well as translational KE that has to be taken 
into account!

• This is why the acceleration of the hanging masses is less than before 
– the pulley itself is now interacting with the string and hanging 
masses, impeding their motion
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Like the rest of the rotational parameters, rotational KE is related closely 

to its translational counterpart. We know that 𝐾𝐸!"#$%&#!'($#& =
)
*
𝑚𝑣*. Since I

is the rotational counterpart to m, and 𝜔 is the rotational counterpart to v, we 
can say:

Rotational KE

𝐾𝐸!"#$#%"&$' =
1
2
𝐼𝜔(

All our other energy parameters are still in operation.

– Work is still �⃗� ) 𝑑. For rotations, we can also say W = 𝜏 ) Δ𝜃
– Grav. PE is still mgy, and spring PE is still ½ kx2

– Conservation of Energy is also still a thing – except now, Σ𝐾𝐸
includes both rotational KE and translational KE in the system!
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Conservation of Energy
Now, taking both translational and rotational motion into account, conservation 
of energy looks like:

Σ𝐾' + Σ𝑈' +𝑊+,! = Σ𝐾- + Σ𝑈-

Σ𝐾!"#$#%"&$',%&%#%$' + Σ𝐾#!$&*'$#%"&$',%&%#%$'

Note that objects that are both rotating and translating have both types of KE!
Examples: ball rolling down a ramp, wheel rolling across ground, etc.

Σ𝐾!"#$#%"&$',+%&$' + Σ𝐾#!$&*'$#%"&$',+%&$'
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6.)

So how fast are the hanging masses moving after 
they have traversed a distance h?

This is a conservation of energy problem.  Defining the 
zero-potential energy levels, then writing out the governing 
equation for the system without solving yields:

1.) The tension on either side of a massive pulley is different; and
2.) You can assign each mass its own zero potential energy level for gravity (near 
the surface of the earth), independent of any other mass in the system.
3.) Although it may not be obvious at first glance, the extraneous work done by 
the two tensions added to the work done by the torque produced by those tensions 
on the pulley will add to zero (that’s why        is zero).
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So two morals here are:



Quick moment of inertia question
Consider the following shapes: a hoop (I = MR2), a solid sphere (I = 2/5 MR2), a 
solid cylinder (I = ½ MR2), and a thin shelled sphere (I = 2/3 MR2). All four have 
the same mass and same radius, and are released from rest at the top of a ramp. 

Rank the bodies from highest to lowest acceleration down the ramp. Explain.

Rank the spheres from highest to lowest rotational KE down the ramp. Explain.

Greater moment of inertia means less angular acceleration, therefore less 
translational acceleration (because a = r𝛂). So, highest acceleration is 
least I and: solid sphere > solid cylinder > thin shell sphere > hoop

All start with the same PE, so their total E is equal. As they roll, some E 
goes to rotational KE, some to translational KE. Energy devoted to 
translational motion turns into accelerating the body, so the slowest 
object has the most ROTATIONAL KE: hoop > thin shell sphere > 
cylinder > sphere
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Ball rolling down ramp –
now with energy!

A thin spherical shell (a ball--I./ = *
0
MR*) of 

mass M and radius R rolls down a ramp with some 
initial velocity v1. Assume it rolls without slipping (i.e., 
there is some friction).

b.) How does that velocity compare to a block on a similar but frictionless 
incline when the block drops the same distance and has the same initial vi?

a.) How fast is it moving once it’s dropped a vertical distance h? (or this could 
ask, “after the ball had traveled a distance d?”
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Let’s start with the Conservation of Energy equation, with all its terms:

h=0

h

Canceling the M and R terms leaves us with:
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Note that we could have taken the “fixed point, 
instantaneous pure rotation” perspective with this problem and, 
with the Parallel Axis Theorem (                                                      
written the kinetic energy relationship thinking of the ball as 
though it was executing a pure rotation (instantaneously) about 
its contact point.  That equation would have looked like: h=0

h
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Even though it’s the same, the reasonable way to approach this is from the center 
of mass perspective! 10.) 



Block sliding down ramp
How does this compare to a non-rolling object: From previous slide, v1

with rotation:

Notice that when an object is rotating as well as translating, its total (kinetic) 
energy is split between the two modes of motion. How much rotational KE there 
is compared to translational KE will depend on the moment of inertia of the 
object.
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Example 11: So let’s go back to the 
swinging beam of length L pinned at an angle    a 
quarter of the way up the beam (i.e., at L/4).  The 
cable is cut and the beam swings down.  What is 
the velocity of it’s center of mass as it passes 
through its lowest point.  We know:

m, L, g, θ, φ and Icm,beam = 1
12

mL2

In this case, the object is rotating about the pin, so it 
makes sense to evaluate its motion relative to the fixed 
axis at the pin.  Tracking the center of mass drop for 
potential energy positions (see sketch), we can write:

θ
pin

θ

12.)

cable cut

ω2

 i
c. of  m.

 ic. of  m. y = 0

L
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and we used the Parallel Axis Theorem to 
calculate earlier the moment of inertia about the 
pin as:

Ipin =
7
48
mbeamL

2



m, L, g, θ, φ and Icm,beam = 1
12

mL2,  Ipin =
7
48

mL2
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KE1∑ +           U1∑                + Wext∑ =    KE2∑   + U2∑
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We could have looked at this from the perspective of the center of mass.  That would 
look like:

KE1∑ +            U1∑              + Wext∑ =             KE2∑                  + U2∑
     0    +  mg L

4 + L
4( )sinθ⎡

⎣
⎤
⎦ +     0    = 1

2
m vcm( )2 + 1

2
Icm ω2( )2⎡

⎣⎢
⎤
⎦⎥
+    0

Try the math.  It will yields the same result.



Problem 8.52: dropping bucket
A 3 kg pail is attached to a rope wound around a 5.0 kg
spool of radius 0.6 meter.  The pail is released and falls 4.0 
vertical meters.

a.) Write the equations you’d need to determine the 
acceleration of the bucket. (in terms of mpail, mspool, R, h, g)

b.) Using energy considerations (NOT the acceleration 
from Part a), find the velocity of the pail after it has fallen a 
distance “h,” which you can make equal to 4.0 vertical meters 
once you have done the problem algebraically.
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Bucket problem
To find the acceleration (using variables), draw
some fbd’s, sum the forces in the y-direction and sum
the torques about the axis of rotation:

Σ𝜏$,%*:

Now, combine them:

=
(3𝑘𝑔)(9.8 𝑚𝑠!)

3𝑘𝑔 + 12 (5𝑘𝑔)
= 5.35 𝑚/𝑠!

mbg

msg

Σ𝐹-:
𝑇 − 𝑚.𝑔 = −𝑚.𝑎

⟹ 𝑇 = 𝑚.𝑔 − 𝑚.𝑎

𝑚.𝑔 − 𝑚.𝑎 =
1
2
𝑚*𝑎

𝑎 =
𝑚.𝑔

𝑚. +
1
2𝑚*
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Bucket problem (con’t.)
Now, use conservation of energy to determine the velocity of the pail after it has 
fallen h = 4 meters:

Note that using the acceleration from Part a and a combination of kinematic 
equations (which we could use as the angular acceleration is constant), we get v = 
6.54 m/s also – same answer both ways!
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              = 6.54 m/s
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Swinging beam…now with energy!
Problem 8.53A giant swing consists of a M = 365 kg, L = 10 meter 

long arm with two “massless” seats at its end. Consider 
the swing as a uniform bar, with Icm = 1/12 ML2.

d.) What’s the speed of the chairs at the bottom of the arc?

b.) What’s the potential energy when at some 
angle above the lowest point?

a.) Relative to the chair’s lowest point, 
where’s the center-of-mass of the arm?

c.) What’s the potential energy at the bottom of the arc?
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b.) What’s the potential energy when at some 
angle above the lowest point?

a.) Relative to the chair’s lowest point, where’s the center-of-mass of the arm?

The center of mass will be halfway 
down as the chairs are massless.
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c.) What’s the potential energy at the bottom of the arc?

ycm = L/2

Ubottom = mgh(L/2)

We measure U from the center 
of mass – its displacement gives 
us the h we need here
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Now we get to put it together and use energy considerations:

Remember to consider what moment of 
inertia you have vs. what you need:
Ipin = Icm + md2 = 1/12 ML2 + M(L/2)2

d.) What’s the speed of the chairs at the bottom of the arc?

19.) 


